Vomma (Grecs)
Le Vomma ou Volga ou dTau/dVol représente la sensibilité du vega d’une option par rapport à une variation de la volatilité implicite. Il s’agit donc de la dérivée seconde de la valeur de l’option par rapport à la volatilité, ce qui permet de mesurer la convexité du vega. Ce grec de second ordre est moins fréquemment utilisé que le gamma par exemple, mais permet tout de même à un trader d’options de mieux évaluer l’efficacité de sa couverture en vega. Il revêt une importance plus grande pour les options exotiques, en particulier les options à barrière.
Pour une option d’achat (call) ou pour une option de vente (put), la formule du vomma est la suivante :
Avec :
Et :
Où :
– S : Cours du sous-jacent
– K : Prix d’exercice de l’option
– r : Taux d’intérêt
– q : Taux de dividende
– σ : Volatilité implicite du sous-jacent
– T : Durée de l’option
Et N’ représentant la fonction de densité de probabilité de la loi normale centrée réduite.