Vanna (Grecs) Définition & Formule | Finance de marché

Vanna (Grecs)

Le Vanna ou DvegaDspot ou DdeltaDvol représente la sensibilité du delta d’une option par rapport à une variation de la volatilité implicite, ou la sensibilité du vega d’une option par rapport à une variation du cours du sous-jacent. Ce grec de second ordre est moins fréquemment utilisé que le gamma par exemple, mais permet tout de même à un trader d’options de mieux évaluer l’efficacité de sa couverture en delta et en vega. Il revêt une importance plus grande pour les options exotiques, en particulier les options à barrière.

Pour une option d’achat (call) ou pour une option de vente (put), la formule du vanna est la suivante :

vanna

Avec :

d1

Et :

d2

Où :
– S : Cours du sous-jacent
– K : Prix d’exercice de l’option
– r : Taux d’intérêt
– q : Taux de dividende
– σ : Volatilité implicite du sous-jacent
– T : Durée de l’option

Et N’ représentant la fonction de densité de probabilité de la loi normale centrée réduite.

Finance de Marché est un site d’information grand public, ayant pour vocation de partager les connaissances liées aux thématiques financières. Pour en savoir plus, pour des demandes de partenariat ou autre, n'hésitez pas à nous contacter.

Catégories : Définition | Tags : , | Publiez votre commentaire

Laisser un commentaire

Les champs obligatoires sont indiqués avec *